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Abstract Activation of metabotropic glutamate receptor
subtype 4 has been shown to be efficacious in rodent models
of Parkinson’s disease. Artificial neural networks were
trained based on a recently reported high throughput screen
which identified 434 positive allosteric modulators of
metabotropic glutamate receptor subtype 4 out of a set of
approximately 155,000 compounds. A jury system contain-
ing three artificial neural networks achieved a theoretical
enrichment of 15.4 when selecting the top 2 % compounds
of an independent test dataset. The model was used to screen
an external commercial database of approximately 450,000
drug-like compounds. 1,100 predicted active small mole-
cules were tested experimentally using two distinct assays of

mGlu4 activity. This experiment yielded 67 positive alloste-
ric modulators of metabotropic glutamate receptor subtype 4
that confirmed in both experimental systems. Compared to
the 0.3 % active compounds in the primary screen, this
constituted an enrichment of 22 fold.
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Introduction

This study implements a machine learning approach (Arti-
ficial Neural Networks, ANNs) to virtually screen commer-
cially available compounds for positive allosteric
modulators (PAMs) of metabotropic glutamate receptor sub-
type 4 (mGlu4). Marino and Conn [1, 2] showed that acti-
vation of mGlu4 is a viable option in treating Parkinson’s
disease (PD), a debilitating movement disorder that afflicts
more than 1 million people in North America. In Parkin-
son’s patients, there is a decrease in GABAergic transmis-
sion at the inhibitory striatopallidal synapse within the basal
ganglia; this abnormality is thought to contribute to the
motor dysfunctions observed in PD patients. Current PD
treatments that are focused on dopamine-replacement strat-
egies ultimately fail in most patients because of loss of
efficacy and severe adverse effects that worsen as the dis-
ease progresses [2, 3]. Selective activation of mGlu4 could
provide palliative benefit in PD. Further, selectively target-
ing mGlu4 avoids the loss of efficacy and severe side-effects
of long-term dopamine replacement therapy. In 2003 Maj
[2, 4] et al. reported on the discovery of (−)-PHCCC, the
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first positive allosteric modulator of mGlu4 with demon-
strated selectivity for group III mGlus, but also a partial
antagonist for mGlu1 (group I). Around the same time,
Mathiesen [5] et al. showed that SIB-1893 and MPEP (a
known mGlu5 antagonist [6]) are mGlu4 PAMs.

Despite the success of many GPCR-based drug discovery
programs, many of the developed ligands lack selectivity.
The traditional approach to target the endogenous ligand
(orthosteric)-binding site has suffered from a paucity of
suitably subtype-selective ligands as orthosteric binding
sites are highly conserved between GPCR subtypes. An
alternative approach is to target allosteric sites that are
topographically distinct from the orthosteric site, either en-
hancing or inhibiting receptor activation [7]. Discovery and
characterization of allosteric modulators of GPCRs has
gained significant momentum over the last few years, espe-
cially since the clinical validity of GPCR allosteric modu-
lators was demonstrated with two allosteric modulators
entering the market [8, 9]. Thus, allosteric modulation rep-
resents an exciting novel means of targeting GPCRs partic-
ularly for CNS disorders, a therapeutic area with one of the
highest rates of attrition in drug discovery [10].

Recently, Niswender [11] et al. reported the discovery of
434 PAMs of mGlu4 from a high-throughput screen of
approximately 155,000 compounds. The study highlighted
a series of cyclohexyl amides joined to a substituted phenyl
ring. The structures of these tested molecules and their
experimentally determined EC50 towards mGlu4 potentia-
tion were employed in the ANNs described in this paper.
Engers et al. [12] discuss the synthesis and evaluation of a
set of heterobiarylamides optimized for penetrating the cen-
tral nervous system. Around the same time, several pyra-
zolo[3,4-d]pyrimidines were also described to be novel
mGlu4 positive allosteric modulators [13]. Two challenges
in further developing PAMs of mGlu4 as a PD treatment
strategy are the low hit-rate of 0.3 % in the original high-
throughput screen resulting in a small number of available
ligands and the ‘flat’ structure activity relationship (SAR)
around the ‘proof of concept’ compound PHCCC. Even
slight structural modifications lead to complete loss of ac-
tivity for the reported compounds [14]. However, successful
modifications of PHCCC were reported later by our group
[15]. The present study addressed both challenges by iden-
tifying additional PAMs from commercially available com-
pound libraries and exploring the chemical space around the
known active compounds.

Quantitative structure activity relationship (QSAR) mod-
els describe the often complex, non-linear relation between
the chemical and physical properties of molecules and their
biological activity; for a review of different methods see
Todeschini et al. [16, 17]. Classical QSAR was introduced
by Hansch et al. by deriving biological activity from elec-
tron density [18]. In 1988 Cramer [19] introduced

Comparative Molecular Field Analysis (CoMFA.) CoMFA
establishes 3D-QSAR by correlating sterics and electrostat-
ics to the bioactivity data. This approach was expanded into
the Comparative Molecular Similarity Index Analysis
(CoMSIA) by Klebe [20] in 1994. However, both
approaches rely on the spatial alignment of small molecules
sharing a common scaffold. The QSAR techniques
employed in the present and similar studies utilize 2D mo-
lecular fingerprints and 3D molecular descriptors coupled
with machine learning [21–23]. These descriptors are inde-
pendent from the orientation of the small molecule and the
existence of a common scaffold. ANNs have been success-
fully applied in biochemistry to generate QSAR models
[23–27]. Our group recently published a theoretical compar-
ison of machine learning techniques for identification of
compounds that are predicted allosteric modulators of the
mGlu5 glutamate response [28, 29].

In the present study, artificial neural networks (ANNs)
were trained on descriptors computed with the software
package ADRIANA [30] linking chemical properties of
small molecules to their potency as PAMs of mGlu4.
Fragment-independent scalar descriptors, 2D and 3D sur-
face and auto-correlation functions, and radial distribution
functions are employed to encode a large diversity of che-
motypes into comparable mathematical representations [29].

Methods

Two independent assays for primary and confirmatory
screen

The compounds identified in the virtual screen were
ordered from ChemBridge and tested at the Vanderbilt
HTS facility. These compounds were screened in single
point at a nominal 10 μM concentration employing the
human mGlu4/Gqi5 calcium mobilization assay as well
as the rat mGlu4 thallium flux assay described in Nis-
wender et al. [11, 31]. Compounds exceeding three
standard deviations over the control EC20 response were
then screened in concentration-response curve format in
both assays.

Preparing the input for the ANNs

Only 0.3 % (432 molecules) of the whole data set (156,146
molecules) was active. For training, the dataset was over-
sampled by a factor of 360 (see Fig. 1) [29]. This leads to a
data set with 311,234 molecules where approximately half
of the data points were active and the other half inactive.

Three-dimensional models of all 156,146 molecules from
the original HTS were generated using CORINA [32].
These models served as input for the ADRIANA [33]
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software package. All 35 categories (scalar, 2D/3D auto-
correlation, RDF (eight each), surface auto-correlation
(three), see Table 1) were computed implementing the de-
fault values in each category. Approximately 4 % of all
molecules were not properly encoded by ADRIANA and
removed from the data set. The final data set consisted of
298,914 data points.

Training the ANN on the logarithm of the half maximal
effective concentration EC50

The experimentally determined EC50 values of the active
compounds ranged from 0.4 μM to 15.8 μM. To distinguish
between active and inactive compounds, all inactive com-
pounds were set to an arbitrary potency of 1 mM. The
output for training the ANN consisted of the natural loga-
rithm of the ln(EC50) values ranging from −14.7 (most
active) over −11.1 (least active) to −6.9 (inactive). The root
mean square deviation (rmsd) between experimental and
predicted EC50 values was employed as objective function
in training the ANNs:

rmsd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 expi � predið Þ2

n

s

ð1Þ

where expi is the experimentally determined ln(EC50) value
and predi the predicted ln(EC50) value.

From the 298,914 data points in the oversampled data set,
239,132 (80 %) were employed in the actual training of the
ANN. The monitoring data set consisted of 29,891 data
points (10 %). The rmsd between experimental and pre-
dicted ln(EC50) was computed for the monitoring data set
after each iteration over the full training data set. Once the
rmsd was minimized, the training was terminated, and the

rmsd of the remaining 10 % (independent data set) comput-
ed (see Table 2). Care was taken to exclude overlap between
training, monitor, and independent data set.

Overall structure of the ANNs and the jury system

The trained ANNs consisted of the input layer with up to
1,252 chemical descriptors, the hidden layer consisting of
eight neurons, and one neuron in the output layer predicting
the ln(EC50) of the described molecule. The sigmoid func-
tion S ðxÞ ¼ 1= 1þ exp �xð Þð Þserved as activation function
of the neurons. The ANNs were trained by implementing
resilient back-propagation of errors [34], a supervised learn-
ing approach. The training was terminated after up to 40,000
iterations when the monitoring dataset achieved its mini-
mum rmsd. It took up to 13 hours per network using eight
cores of a core2 quad 2.33 GHz Intel Xeon microprocessor
in parallel on the 64-bit version of Red Hat Enterprise Linux
5.2.

The outputs of the three best ANNs were used as input
for a jury ANN that consisted of three inputs, four hidden
neurons, and one output (Fig. 2). The training of the jury
ANN terminated after 290 steps.

Selection of the optimal set of descriptors
of chemical structure

It is crucial to select the optimal set of descriptors from the
35 available categories. In a top-down approach, the least
significant categories for predicting ln(EC50) were succes-
sively removed to increase the predictive power of the
according ANNs. The advantage lies in removing degrees
of freedom from the ANN by reducing the number of inputs.
Since the number of data points stays the same, the signal-

Fig. 1 Overall model
generation workflow: a SD files
were provided with active and
inactive compounds towards
mGlu4 determined by HTS and
CRC; CORINA and
ADRIANA were employed to
generate 3D structures and
molecular descriptors; b active
molecules were oversampled
360 times to balance data sets; c
molecules were randomly
distributed between training
(80 %), monitoring (10 %), and
independent (10 %) datasets; d
ANNs were trained and e low
sensitivity descriptors were
removed until the quality
measures (see Table 2) no
longer improved; the best three
ANNs were combined into a
jury network
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Table 1 Summary of 1,252
molecular descriptors in 35 cat-
egories computed with
ADRIANA

Description Method Description Property Abbreviation Number

1 Scalar descriptors Molecular weight of compound Weight 1

2 Number of hydrogen bonding acceptors HDon 1

3 Number of hydrogen bonding donors HAcc 1

4 Octanol/water partition coefficient in [log
units]

XlogP 1

5 Topological polar surface area in [Å2] TPSA 1

6 Mean molecular polarizability in [Å3] Polariz 1

7 Dipole moment in [Debye] Dipol 1

8 Solubility of the molecule in water in [log
units]

LogS 1

9 2D Autocorrelation atom identities 2DA_Ident 11

10 σ atom charges 2DA_SigChg 11

11 π atom charges 2DA_PiChg 11

12 total charges 2DA_TotChg 11

13 σ atom electronegativities 2DA_SigEN 11

14 π atom electronegativities 2DA_PiEN 11

15 lone pair electronegativities 2DA_LpEN 11

16 effective atom polarizabilities 2DA_Polariz 11

17 3D Autocorrelation atom identities 3DA_Ident 12

18 σ atom charges 3DA_SigChg 12

19 π atom charges 3DA_PiChg 12

20 total charges 3DA_TotChg 12

21 σ atom electronegativities 3DA_SigEN 12

22 π atom electronegativities 3DA_PiEN 12

23 lone pair electronegativities 3DA_LpEN 12

24 effective atom polarizabilities 3DA_Polariz 12

25 Radial Distribution
Function

atom identities RDF_Ident 128

26 σ atom charges RDF_SigChg 128

27 π atom charges RDF_PiChg 128

28 total charges RDF_TotChg 128

29 σ atom electronegativities RDF_SigEN 128

30 π atom electronegativities RDF_PiEN 128

31 lone pair electronegativities RDF_LpEN 128

32 effective atom polarizabilities RDF_Polariz 128

33 Surface Autocorrelation molecular electrostatic potential Surf_ESP 12

34 hydrogen bonding potential Surf_HBP 12

35 hydrophobicity potential Surf_HPP 12

Total 1252

Table 2 QSAR: rmsd, auc, and enrichment values per model

Iteration Number and type of descriptors train rmsd monitor independent auc enrichment at 2 %

all 1252 1–35 0.204 0.232 0.234 0.708 7.3

scalar 8 1–8 0.232 0.236 0.239 0.631 1.2

1 741 1–8, 14–16, 21–23, 25, 29–33, 35 0.224 0.224 0.227 0.703 7.1

2 578 1–8, 15–16, 23, 25, 30 – 33, 35 0.187 0.212 0.229 0.706 13.0

3 415 1–8, 15, 25, 30–31, 35 0.192 0.211 0.222 0.804 10.7

jury – – 0.159 0.214 0.207 0.732 15.4
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to-noise ratio improves. This procedure is described in detail
elsewhere [29].

The input sensitivity of each of the 27 non-scalar descrip-
tor categories was determined as norm over the individual
input sensitivity values within this category. The descriptor
categories were sorted by input sensitivity. In each step,

categories comprising the least 10 % of input sensitivity
were removed. This process was repeated until the quality
measures were optimized (see Table 2).

Enrichment and area under the curve complement rmsd
as quality measures

Analysis of the rmsd proved to be a poor indicator for model
quality (see Table 2). Hence, all models were also assessed
in terms of their binary classification power using enrich-
ment and area under the curve (auc) quality measures.
Receiver operating characteristic (ROC) curves were gener-
ated as a measure to evaluate predictive power of the ma-
chine learning approaches. ROC curves plot the rate of true
positives TP/P versus the rate of false positives FP/N of a
binary classifier, here biological activity (see Figs. 3 and 4).
TP and FP represent the numbers of known active and inac-
tive compounds within a given subset of small molecules
ordered by their predicted biological activity. Similarly, P
and N represent the according numbers for the whole HTS
dataset. The diagonal represents the performance expected
from a random predictor. A higher auc of a ROC curve
represents a better predictive power of the according model.

The enrichment represents the expected factor by which
the fraction of active compounds is increased in a small set
of compounds resulting from an in silico virtual screen

Fig. 2 Schematic view of the jury system: The output of the best three
ANNs according to the quality measures reported in Table 2 were
employed as inputs for a jury ANN with four hidden neurons

Fig. 3 Receiver Operating Characteristic (ROC) curve plot for classi-
cal (blue), all (red), and jury (black) approach: This plot compares
classical QSAR (eight scalar descriptors) with utilizing all (1,252)
available ADRIANA descriptors and a jury approach. It demonstrates
that ADRIANA descriptors add to the classical approach and that a
jury approach improves performance even further. The inset shows the
first 20 % of the False Positive rate

Fig. 4 Receiver Operating Characteristic (ROC) curve plot for 415
(red), 578 (green), 741 (blue), and jury (black) approach: The three
optimized descriptor sets (415, 578, 741) perform similarly well as the
jury approach. However, the jury approach is more stable compared to
the three other ANNs, as can be seen in Table 2. The inset shows the
first 20 % of the False Positive rate

J Mol Model (2012) 18:4437–4446 4441



compared to the same fraction in the original HTS dataset
(0.28 %).

enrichment ¼ TP

TP þ FP
=

P

P þ N
ð2Þ

where P represents the total number of active compounds
(positives) in the training dataset and N the total number of
inactive compounds (negatives). TP stands for true positives
– active compounds found in a compound library from
virtual screening. FP are false positives – compounds pre-
dicted to be active that turn out to be inactive. Enrichments
can be determined when experimentally testing a compound
library obtained from a virtual screen or for an independent
dataset set aside during training of the QSAR method. The
enrichments reported in Table 2 were determined when
selecting 2 % of the compounds in the independent dataset
predicted to be most active.

Implementation

The ANN and the Resilient Propagation training algorithm
[34] were implemented in the BioChemistryLibrary (BCL).
The BCL is an in house developed, object-oriented library
written in the C++ programming language currently consist-
ing of approximately 400 classes and 300,000 lines of code.
Chemical descriptors were computed with ADRIANA [30,
33] based on three-dimensional structures generated by
CORINA [32].

Results

Artificial Neural Networks (ANNs) were trained to predict
the capability of drug-like molecules for allosteric potentia-
tion of the metabotropic glutamate receptor subtype 4
(mGlu4) based on a High Throughput Screen (HTS) as
reported by Niswender et al. [11]. Commercially available
databases of small molecules were virtually screened for
novel PAMs of mGlu4. Hit compounds were verified exper-
imentally in a human mGlu4 Gqi5-mediated calcium assay
and a rat mGlu4 thallium flux assay.

Optimization of molecular descriptor set improves
prediction results

An ANN was trained using only the scalar descriptors 1–
8 to report a baseline performance using only naïve descrip-
tors (Fig. 3 and Table 2) yielding an auc value of 0.631. The
enrichment equals 1.2 at a compound cutoff of 2 %. The
relative rmsd value for the independent data set is 0.238.
‘Total Polarizable Surface Area’ was the input with the
highest sensitivity (0.87) in this model with the other de-
scriptor sensitivities ranging from 0.07 (‘Dipole Moment’)

to 0.48 (‘Hydrogen Bond Acceptors’). The second baseline
model involved all 1,252 descriptors as inputs. The auc and
enrichment values improved to 0.708 and 7.3, respectively,
while the rmsd dropped to 0.234.

In a 1st round of descriptor optimization, one third of the
descriptor categories with the lowest input sensitivity were
removed. Note that the scalar descriptors were kept in all
models to facilitate comparison of input sensitivities with
the baseline. This procedure leads to a final model contain-
ing 741 descriptors in 21 categories (see Table 2) without a
significant change in model quality (auc: 0.703, rmsd:
0.227, enrichment: 7.1). The 2nd round yielded a model
with 578 descriptors in 17 categories. The quality measures
were better than the model with all descriptors with an auc
of 0.706, rmsd of 0.229, and an improved enrichment of
13.0. The last iteration left 415 descriptors in 13 categories.
While the auc value (0.804) and rmsd value (0.222) im-
proved, the enrichment (10.7) dropped.

Jury model combines favorable features of all previous
models

As these QSAR models have a comparable quality and en-
richment values are affiliated with high uncertainties, a jury
approach was tested to combine models. An ANNwas trained
on the output of the three ANNs with the reduced descriptor
sets (see Fig. 2). This procedure improved the critical enrich-
ment value to 15.4 and reduced the rmsd to 0.207. The auc
value is with 0.732, a value lower than the 0.804 value
reported for the ANN model with 415 descriptors. However,
the reduced auc value this model results from the second half
of the ROC curve, which is not employed when predicting
molecules with high activities (Fig. 4).

Virtual screening of ChemBridge compound library

The ANN QSAR model was applied in a virtual screen of
the ChemBridge EXPRESS-Pick collection of commercial-
ly available compounds. In silico screening of the entire
library of ~450,000 compounds took approximately ten
hours on a regular personal computer. A total of 1,108
compounds with predicted EC50 values below 3 μM for
mGlu4 PAM activity were selected.

Screening these compounds in the human mGlu4/Gqi5

calcium mobilization assay as well as the rat mGlu4 thallium
flux assay described in Niswender et al. [11, 31] identified
168 primary hits which were then moved to screening in
concentration-response curve format in both assays. 67
compounds were confirmed as potentiators in both assays,
representing an enrichment of 67/1,108×156,184/434022
relative to the initial experimental HTS hit rate. The exper-
imentally observed enrichment is consistent with the enrich-
ment values predicted from analysis of an independent
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dataset during development of the QSAR model, given the
large uncertainty of these values (Table 2).

The EC50 of the 67 confirmed potentiators ranged from
0.4 μM to 15.8 μM with three compounds below 1 μM in
the human Gqi5 assay and from 0.4 μM to >10 μM with
three compounds below 1 μM in the rat thallium flux assay.

Simple similarity search fails to identify 54 out of 67
confirmed potentiators

To compare the ANN virtual screen with a more naïve
similarity search, we selected 1,116 small molecules from
the ChemBridge database based on MACCS structural key
fingerprint similarity to known actives. The number of com-
pounds was chosen to create a dataset of similar size to the
one selected through the ANN. The artificially high Tani-
moto coefficient cutoff of 96.7 % indicates that a similarity

search with a reasonable Tanimoto coefficient would create
a dataset much too large for experimental verification. The
intersection between this set of 1,116 compounds and the 67
potentiators identified by the ANN contains 13 compounds
(19 %) missing 54 compounds identified by the ANN virtual
HTS.

Enrichment of 22 in known benzo-oxazoles scaffold

The rate of PAMs from the benzo-oxazole scaffold in the
original HTS constituted 88 out of 26,180 (0.34 %, MOE
[35] similarity search employing MACCS fingerprints at
85 % Tanimoto Superset/Subset.) A simple similarity search
for benzo-oxazoles would preserve this rate while the virtual
HTS enriched benzo-oxazoles by a factor of 8/133*156,146/
432022.

Fig. 5 Schematic view of an ANN: The input to the ANN consists of
up to 1,252 descriptors in 35 categories. The weighted sum of the
inputs is propagated through the activation function and fed into the
hidden layer (8 neurons). The output is the predicted value of the

logarithm of the EC50 of the small molecule towards potentiation of
glutamate response at the metabotropic glutamate receptor 4. The heat
map shows the input sensitivity of each category from lowest (red) to
highest (green)

J Mol Model (2012) 18:4437–4446 4443



Fig. 6 Scaffold category analysis: (I) Scaffold composition of
432 mGlu4 PAMs from HTS. mGlu4 PAMs were clustered with the
Mathematica package using the Tanimoto coefficient of the largest
common substructure as distance measure. Three major scaffolds are
constituted by 28 phenylbenzamides (6.5 %, a), 40 benzo-oxazoles

(9.3 %, b), and 41 (9.5 %, c) furan-amides. (II) Scaffold composition
of 67 active compounds in the postscreen. (III) Scaffold composition
of inactive compounds in the postscreen. Compounds d, e, and f are
examples for active compounds identified by the virtual HTS, where g,
h, and i were found to be inactive

4444 J Mol Model (2012) 18:4437–4446



Discussion

Radial Distribution Functions (RDFs) are most important
descriptors for predicting mGlu4 PAM activity

Several of the descriptor categories (see Table 1) employ the
same chemical property but different encoding functions (2D
vs. 3D auto-correlation and Radial Distribution Functions).
Therefore, a descriptor optimization strategy was critical to
identify the smallest set of descriptors needed for optimal
QSAR models. Using this technique, the number of parame-
ters (weights) in the ANNs is reduced, improving the signal-
to-noise ratio for the trained models. To determine the ‘least
necessary’ descriptor categories, the input sensitivity (see
Methods) of each input with respect to the output of the
ANN, i.e. biological activity prediction, was determined.

As more descriptors are removed from the inputs, the
input sensitivity values increase for RDFs (see Fig. 5). Spe-
cifically, RDFs for π- and lone pair electronegativity play an
important role. RDFs for identity and polarizability are
featured most prominently in the model with 578 descriptors
which is the best non-jury network (see Table 2). The
importance of these descriptors immediately makes sense,
since the active compounds of the original High Throughput
Screening often feature phenyl rings and amide substruc-
tures that are well described by such RDFs.

Virtual screening yields active compounds similar
to known hits

The 67 newly identified mGlu4 PAM compounds contained
eight benzo-oxazoles, 42 furan-amides including 22 thiour-
eas, and three phenylbenzamides. All three compound clas-
ses were represented in the original HTS hits [11, 36, 37]
and featured modifications in R-groups (Fig. 6). Experimen-
tally inactive compounds from these classes included 72
phenylbenzamides, 125 benzo-oxazoles, and 215 furana-
mides out of 1,041 inactive compounds.

Conformational ensembles could improve activity
prediction from 3D molecular descriptors

CORINA provides one low energy conformation per small
molecule. For flexible molecules multiple conformations of
similar energy can exist. The conformation of the small
molecule binding allosterically to the mGlu4 is then un-
known. This shortcoming of the present approach could be
addressed by generating an ensemble of low energy con-
formations for each small molecule and using the lowest
predicted EC50 value in virtual screening. The molecular
libraries employed in the present study are dominated by
rather rigid molecules with few rotatable bonds. Therefore

we speculate that the impact of additional conformational
sampling is small.

Conclusions

Artificial Neural Networks were trained to generate QSAR
models from an HTS experimental dataset of compounds with
hmGlu4 Gqi5 assay activity. A jury system, based on the three
ANN models, generated improved enrichments when com-
pared to each individual model. The enrichment factor of 22
determined from biological testing of 1,100 compounds pri-
oritized from a commercial library of ~450,000 substances
demonstrates the predictive power of the method.
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